High School Science Virtual Learning

Chemistry

Diffusion, Effusion, and Graham's

 LawMay 14, 2020

High School Chemistry
Lesson: [5/14/20]

Objectives/Learning Targets:

Students will be able to explain effusion and diffusion. Students will be able to do calculations with Graham's Law.

Let's Get Started:

Gas Laws Summary

Name	Equation	Things that change	Things held constant
Combined	$\mathrm{P}_{1} \times \mathrm{V}_{1} \times \mathrm{T}_{2}=\mathrm{P}_{2} \times \mathrm{V}_{2} \times \mathrm{T}_{1}$	Pressure, volume and temperature	Amount of gas
Boyles	$\mathrm{P}_{1} \times \mathrm{V}_{1}=\mathrm{P}_{2} \times \mathrm{V}_{2}$	Pressure and Volume	Temperature Amount of gas
Charles	$\mathrm{V}_{1} \times \mathrm{T}_{2}=\mathrm{V}_{2} \times \mathrm{T}_{1}$	Volume and Temperature	Pressure Amount of gas
Gay-Lussac	$\mathrm{P}_{1} \times \mathrm{T}_{2}=\mathrm{P}_{2} \times \mathrm{T}_{1}$	Pressure Temperature	Volume Amount of gas

1. A balloon is filled with 5.0 L of helium in the morning when the temperature is $20.00^{\circ} \mathrm{C}$. By noon the temperature has risen to $35.00^{\circ} \mathrm{C}$. What is the new volume of the balloon?
2. 5.0 L of gas in a piston at a pressure of 1.0 atm are compressed until the volume is 1.5 L. What is the new pressure inside the piston?

Let’s Get Started: Answer Key

1. $\mathrm{V}_{1} \times \mathrm{T}_{2}=\mathrm{V}_{2} \times \mathrm{T}_{1}$
$5.0 \mathrm{~L} \times 293 \mathrm{~K}=\mathrm{V}_{2} \times 308 \mathrm{~K}$
$V_{2}=4.8 \mathrm{~L}$
2. $P_{1} \times V_{1}=P_{2} \times V_{2}$
$1.0 \mathrm{~atm} \times 5.0 \mathrm{~L}=\mathrm{P}_{2} \times 1.5 \mathrm{~L}$
$P_{2}=3.3 \mathrm{~atm}$

Lesson Activity:

Directions:

1. Take notes as you watch the following video.
2. Write down the information in the notes slides.

Links:

- Video: Crash Course

Notes

- Particles in a mixture of gases at the same temperature have the same kinetic energy.
- The kind of particle is not important.
- The contribution each gas in a mixture makes to the total pressure is called the partial pressure exerted by

Composition of Dry Air

Component	Volume (\%)	Partial pressure (kPa)
Nitrogen	78.08	79.11
Oxygen	20.95	21.22
Carbon dioxide	0.04	0.04
Argon and others	0.93	0.95
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 1 . 3 2}$

- The total pressure of dry air is the sum of the partial pressures of the component gases.

Notes

- In a mixture of gases, the total pressure is the sum of the partial pressures of the gases.
- The chemist John Dalton proposed a law to explain this.
- Dalton's law of partial pressures states that, at constant volume and temperature, the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of the component gases.

$$
P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

Notes

- Diffusion
- Tendency of molecules to move toward areas of lower concentration until the concentration is uniform throughout
- Examples
- Deodorizers
- Perfumes/colognes
- "Breaking wind"

Notes

- Effusion
- The process by which a gas escapes through a tiny hole in a container
- Graham's Law
- Thomas Graham (1829)
- The rate of effusion of a gas is inversely proportional to the square root of its molar mass

$$
\frac{\text { Rate }_{A}}{\text { Rate }_{B}}=\sqrt{\frac{\text { molar mass }_{B}}{\text { molar mass }_{A}}}
$$

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

1. A sample of hydrogen gas is collected over water. The total pressure of the wet hydrogen in a 500 mL container is 756.5 mmHg at $21^{\circ} \mathrm{C}$. If the hydrogen is dried and placed in a 200 mL container at $18{ }^{\circ} \mathrm{C}$, what will its pressure be?
2. A 500.0 mL sample of a gas is collected over water at $30^{\circ} \mathrm{C}$ and 0.923 atm . What volume would the gas occupy if dry and at $100^{\circ} \mathrm{C}$ and 1.000 atm?
3. The atmosphere in a sealed diving bell contained oxygen and helium. If the gas mixture has 0.200 atm of oxygen and a total pressure of 3.00 atm , calculate the mass of helium in 1.00 L of the gas mixture at $20^{\circ} \mathrm{C}$.
4. A quantity of nitrogen gas originally at 4.60 atm in a 1.20 L container at 23.9 ${ }^{\circ} \mathrm{C}$ is transferred to a $10.0-\mathrm{L}$ container. A quantity of oxygen originally at 3.50 atm and $23.9^{\circ} \mathrm{C}$ in a 4.00 L container is transferred to the same 10.0 L container with the nitrogen. What is the total pressure of the two gases in the 10.0 L container at $19.7^{\circ} \mathrm{C}$?

Once you have completed the practice questions check with the answer key.

$$
\mathrm{P}_{\text {toalal }}=\mathrm{P}_{\mathrm{H}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O} \text { up }} \quad \text { initial } \mathrm{P}_{\mathrm{H}_{2}}=\mathrm{P}_{\text {toall }}-\mathrm{P}_{\mathrm{H}_{2} \text { Ouap }}=756.5 \mathrm{mmHg}-18.7 \mathrm{mmHg}=737.8 \mathrm{mmHg}
$$

1.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)\left(\frac{T_{2}}{T_{1}}\right)=737.8 \mathrm{mmHg}\left(\frac{291 \mathrm{~K}}{294 \mathrm{~K}}\right)\left(\frac{500 \mathrm{~mL}}{200 \mathrm{~mL}}\right)=\mathbf{1 . 8 3 \times 1 0 ^ { 3 }} \mathbf{m m H g}
$$

2.

$$
\begin{aligned}
& P_{\text {initial }}=P_{\text {toxal }}-P_{\text {water vapor }}=0.923 \mathrm{~atm}-31.824 \mathrm{mmHg}\left(\frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right)=0.881 \mathrm{~atm} \\
& V_{2}=500.0 \mathrm{~mL}\left(\frac{373 \mathrm{~K}}{303 \mathrm{~K}}\right)\left(\frac{0.881 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)=542 \mathrm{~mL}
\end{aligned}
$$

Once you have completed the practice questions check with the answer key.

$$
\mathrm{P}_{\mathrm{Hc}}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{O}_{2}}=3.00 \mathrm{~atm}-0.200 \mathrm{~atm}=2.80 \mathrm{~atm} \mathrm{He}
$$

3.

$$
\mathrm{PV}=\frac{\mathrm{g}}{\mathrm{M}} \mathrm{RT} \quad \mathrm{~g}=\frac{\mathrm{PVM}}{\mathrm{RT}}=\frac{2.80 \mathrm{~atm}(1.00 \mathrm{~L}) 4.0026 \frac{\mathrm{~g}}{\mathrm{~mol}}}{0.082058 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}(293 \mathrm{~K})}=\mathbf{0 . 4 6 6} \mathbf{g ~ H e}
$$

4. $P_{\text {toal }}=P_{\mathrm{N}_{2}}+\mathrm{P}_{\mathrm{O}_{2}}=0.544 \mathrm{~atm}+1.38 \mathrm{~atm}=\mathbf{1 . 9 2} \mathbf{a t m}$ total

$$
\mathrm{P}_{\mathrm{N}_{2}}=4.60 \mathrm{~atm}\left(\frac{1.20 \mathrm{~L}}{10.0 \mathrm{~L}}\right)\left(\frac{292.9 \mathrm{~K}}{297.1 \mathrm{~K}}\right)=0.544 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{O}_{2}}=3.50 \mathrm{~atm}\left(\frac{4.00 \mathrm{~L}}{10.0 \mathrm{~L}}\right)\left(\frac{292.9 \mathrm{~K}}{297.1 \mathrm{~K}}\right)=1.38 \mathrm{~atm}
$$

More Practice:
Follow the links below to do more practice.

1. Dalton's Law Practice
2. Partial Pressures and the Kinetic Molecular Theory of Gases

Additional Practice:
Click on the link below for additional practice. Quiz

